A New Design for Two-input XOR Gate in Quantum-dot Cellular Automata
نویسندگان
چکیده مقاله:
Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in many important circuits such as full adder (FA). In this paper we propose a novel design for two-input XOR gate in QCA. Two-input XORs could be utilized in constructing three-input ones which are widely used. The proposed XOR gate is the smallest design among the two-input XORs and it achieves significant improvements in terms of complexity and latency in comparison to the only existing similarly designed gate. Contrary to the common designing method which uses the logic function of XOR, the gate is constructed based on explicit interactions between QCA cells. The simulation results have been verified using the QCADesigner.
منابع مشابه
A Five-input Majority Gate in Quantum-dot Cellular Automata
Quantum cellular automata (QCA) is expected to provide highly dense nanotechnology implementations of logic. However, unlike the CMOS technology, the designs in QCA are constrained by the limited number of basic gate structures. This paper describes an important new basic building block, a five input majority gate (MAJ5) in QCA technology. Many new functions can be directly implemented in a sin...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملUltra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate
In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...
متن کاملDesign of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
متن کاملA Novel Design for XOR Gate used for Quantum-Dot Cellular Automata (QCA) to Create a Revolution in Nanotechnology Structure
Novel digital technologies always lead to high density and very low power consumption. One of these concepts is Quantum-dot Cellular Automata (QCA), which is one of the new emerging nanotechnology-based on Coulomb repulsion. This article presents three architectures of logical “XOR” gate, a novel structure of two inputs “XOR” gate, which is used as a module to implement four inputs “XOR” gate a...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 1- 8
تاریخ انتشار 2019-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023